
The Lattice QCD Workflow Provenance Framework

Luciano Piccoli James Kowakolski James Simone Xian-He Sun

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, IL, USA 60510

lqcd-workflow@fnal.gov

Abstract

Lattice Quantum Chromodynamics (LQCD) workflows
produce large amounts of data resulting from numerical
simulations of QCD quantum field theory. Configuration
files generated through Monte Carlo simulations are later
used for computing certain physics quantities such as decay
rates and particle masses. Workflow systems can be used
to help standardize workflow descriptions, but lack track-
ing of domain specific information. Additionally, queries
on provenance metadata require domain scientists to learn
specific languages. In this paper we propose a model
for tracing data and execution provenance independent of
workflow system. We believe the model is applicable for sci-
entific problems in general while allowing domain specific
information to be included. We use the Ruby on Rails frame-
work to implement the data model in conjunction with the
openWFEru BPM execution engine. Provenance queries
can be composed using the Ruby language, which is more
accessible than raw SQL statements. We show some pre-
liminary results that indicate little performance impact gen-
erated by recording the provenance information and show
some examples of data retrieval using Ruby.

1. Introduction

Unprecedented amounts of data are currently produced
and analysed by e-science experiments. The organization
of this massive information is critical for its effective use
in new discoveries. Lattice Quantum Chromodynamics
(LQCD), the numerical study of QCD quantum field theory
on a four-dimensional discrete lattice, generates consider-
able data that are processed at several institutions. Appli-
cations, software libraries, input data and workflow recipes
are shared among collaborators worldwide.

Unlike many e-science experiments, which use Grid re-
sources for harvesting capacity processing power, LQCD
computations employ tightly-coupled parallel processing
which requires computers with high-speed low-latency net-

works. Binary codes are fine tuned to exploit capabilities of
each underlying architecture. LQCD workflows can effec-
tively exploit the capacity of one or more parallel computers
by running many independent computations at once.

LQCD workflows are categorized into two typical types:
configuration generation and analysis campaign. The for-
mer is used for creating anensemblethrough Monte Carlo
simulations. An ensemble is an ordered collection of gluon
configurations sharing the same physics parameters (e.g.
lattice spacing and masses). An analysis campaign iterates
over an ensemble to compute physics quantities such as de-
cay rates and particle masses. The processing for each con-
figuration is independent of the other configurations. Many
such analysis campaigns are conducted on each ensemble.

Provenance is one of the most important requirements
for LQCD workflows [10]. It is necessary for tracing files
origins, including the workflow execution (instance) and
which job (participant) generated the file along with physics
parameters. An important aspect of a provenance system is
the ease of formulating queries which can be difficult for a
domain scientist, partly because it usually involves learning
an unfamiliar language.

The configuration generation and analysis campaign
workflows require coordination of physics parameters, ex-
ecution environment parameters, binaries, and input, out-
put and log files. Python, Perl and shell scripts are
currently used to execute workflows. Final and inter-
mediate data files are generated as workflow participant
outputs. Some secondary data products which serve
mainly as data quality indicators (e.g. conjugate gra-
dient residuals, average plaquettes and status messages)
are simply printed and become scattered among the mul-
titude of log files generated by workflow scripts. The
loose organization and control of generated files, prod-
ucts, parameters and workflows result in difficult to an-
swer questions such as: Where is the configuration file
l612f21b6600m0290m0484.6? What where the input pa-
rameters used to generatel612f21b6600m0290m0484.6?
Which configuration files where generated using algorithm
su3 rmd version 1.2? What are the configuration files gen-



erated with residuals smaller than 10E-5?
Most workflow systems lack detailed provenance data

and execution tracing. These features are critical for LQCD
and similar large scale scientific workflows. Tracking of
outputs in forms other than files (e.g. error messages, pa-
rameters and checksums) is needed for provenance to be
complete. Two workflow management systems were eval-
uated using sample LQCD workflows and the provenance
features provided were considered not sufficient [10].

Considering that generic provenance modeling is not
trivial to adapt for specific problems, we developed our own
model driven by concrete LQCD workflow requirements.
The main contributions of this paper are in the provenance
data model and its implementation. Despite targeting a spe-
cific problem, the model still allows modifications to sup-
port other scientific applications. That is possible in part
due to the use of a very flexible and extensible framework
for the prototype implementation.

The proposed provenance framework for LQCD is de-
scribed in section 2. Section 3 shows the prototype im-
plementation and discusses advantages of using Ruby on
Rails. The prototype was evaluated in regards to the ability
to perform queries by domain scientists and performance
impact of the provenance framework on typical workflows
(section 4). Related work is discussed on section 5. Finally,
section 6 summarizes our contribution and future work.

2. LQCD Provenance Framework

In order to address the provenance needs of LQCD work-
flows we propose a framework that is independent of work-
flow systems and based on specific requirements of this
field. Our goal is to provide data provenance, execution
tracking and parameter management for all LQCD work-
flows. The framework allows tracking of: provenance of
generated data; values and history of secondary products;
workflow input parameters; and history of execution and en-
vironment used by participants and workflows. In addition
it is possible to compose advanced queries about parame-
ters, results, workflow history and status.

Freire [7] recognizes that provenance querying is closely
tied to storage models used. In fact it is cumbersome for a
scientist to compose SQL queries to retrieve responses for
the sample questions listed before. In section 4 we discuss
more on how to minimize use of SQL by using a very flexi-
ble language for provenance querying.

2.1. Data Model

We use an object-oriented model for describing the
provenance classes and their relationships. Groups of
classes are implicitly divided into four spaces: parame-
ter, data provenance, secondary data, and process history

spaces. The spaces do not define a hard boundary between
sets of classes, but rather a logical and functional aggrega-
tion.

The parameter space archives all parameters used as in-
put for workflows, including physics parameters (e.g. quark
masses), algorithmic parameters (e.g. convergence criteria)
and execution parameters (e.g. number of nodes used). Pa-
rameters are name-value pairs that can be grouped in sets.
Groups of parameters are used to describe the physics prop-
erties of ensembles or hold analysis campaign attributes.
Parameter sets are optionally identified by names. A sim-
plified class diagram showing the parameter space compo-
nents is show in figure 1.

Figure 1. Parameter space

The relationship between input and output files is kept
within the data provenance space (see figure 2). Data prod-
ucts are modeled as Products, which have optional Product-
Properties. An example of LQCD product is the ensem-
ble configuration filel612f21b6600m0290m0484.6that has
a property namedu0 with value 0.94. Its parent configura-
tion file is the product namedl612f21b6600m0290m0484.3
and childl612f21b6600m0290m0484.9. For more complex
analysis campaign workflows it is possible to have multiple
parent-children relationships. The products also have a ref-
erence to the workflow participant instance that generated
it, allowing the file to be reproduced by reconstructing the
processing steps.

Figure 2. Data provenance space

In addition to data files and their properties, LQCD
workflows also produce secondary data very specific to the
experiment. Figure 3 shows the classes that hold secondary
data. These classes have meaning only in the LQCD context



and would need to be expanded in case the model is used in
conjuction with other scientific workflows.

Figure 3. Secondary data space

The process history space (figure 4) holds information
regarding workflows and participants. Each generic class of
participant is defined as a ParticipantType (e.g. numerical
integration). An actual implementation of a ParticipantType
is realized by a Participant (e.g. Gauss algorithm version
2). The Participant holds information about the binary code,
including command line format, version and pre and post
run scripts. The actual execution of a Participant is recorded
as a ParticipantInstance (e.g. Gauss algorithm version 2 ran
successfully on node A producing file X).

Figure 4. Process history space

Even though the provenance framework is designed to be
workflow system independent, it is necessary to track the re-
lationship between ParticipantInstances and workflows. A
similar construct used for managing participants is used for
tracking workflows. WorkflowType defines a class of work-
flow (e.g. Two point analysis). The Workflow describes the
implementation of the type using a workflow language (e.g.
BPEL4WS). The execution of a workflow causes the cre-
ation of a WorkflowInstance, which has references to Par-
ticipantInstances. The analysis of the process history space
in conjunction with the data provenance space allows the
recreation of complete execution traces of workflows.

3. Prototype Implementation

For the implementation of the framework prototype we
chose the Ruby programming language and the Ruby on
Rails (RoR) framework [14]. Ruby is a flexible and dy-
namic object-oriented language similar to Python and Perl
used by the RoR framework. It allows quick and easy de-
velopment of web applications. The key feature of RoR in
regards to the provenance tracking system is the implemen-
tation of the active record pattern [6].

Active record defines the connection between the classes
defined in the previous subsection 2.1 and database ta-
bles. RoR offers transparent connections to a variety of
databases, including Postgres and Mysql. Furthermore, the
active record allows the use Ruby as provenance query
language, addressing problem raised by Freire [7]. The
classes’ attributes are mapped to database table columns
and relationships between classes are described in the
model definition independently from the database.

Figure 5 is a simplified view of the prototype implemen-
tation. A web interface is the main entry point for domain
scientists. It allows users to add, modify or remove param-
eters and parameters sets besides running and monitoring
available workflows.

Figure 5. Prototype implementation diagram

After a workflow and parameters are selected a work-
flow execution engine is launched. The openWFEru BPM
engine [15] is used for the prototype. It is a business ori-
ented workflow system with good support for workflow pat-
terns [1] implemented in Ruby, which integrates very well
with the RoR framework.

As participants are invoked by the engine new Partici-
pantInstances are created in the database. Every participant
optionally has a pre and post run script that are invoked be-
fore and after running the actual binary code. The pre-run
scripts are used for translating parameters from the database
parameter space into command line arguments suitable for
the participant binary. After finishing the participant exe-
cution the post-run script saves provenance records. The
prototype currently submits jobs to PBS/Maui running on
clusters at Fermilab.



The retrieval of provenance information about current
and past workflow executions is possible via the web inter-
face through pre-packaged queries or by using Ruby syntax
as shown in section 4.

Other benefit of RoR framework not currently exploited
by the implemented prototype is the access of the data via
web services. This feature can be used for providing a
provenance service to remote workflow executions.

3.1. Workflow Systems Integration

A goal of our provenance model is to provide a work-
flow system independent tool. It is however a challenging
task to integrate provenance with a workflow management
system. Both systems are required to interface on every op-
eration that generates provenance data, for example when a
participant starts or finishes.

Although applications are the components best suited
to generate the data provenance for the workflow [12] the
codes may not be easily changed to include provenance
tracking mechanisms. Thereby we use wrapping with pre
and post run scripts, allowing legacy applications to be in-
tegrated with the system.

In the prototype, produced products are declared to the
provenance system by the participant wrapper, contained
within post-run script. Depending on the workflow system
used, it is possible to record provenance through callbacks
using events.

4. Evaluation

A two-point analysis campaign workflow was used to
evaluate the overhead introduced by the provenance frame-
work. For each file in the input ensemble a workflow sim-
ilar to figure 6 is executed. The same workflows run with
provenance enabled and disabled for comparison purposes.
Workflow participants for this setup use only a single node,
even though the participants are MPI jobs capable of run-
ning on multiple machines. Jobs are submitted a special
PBS queue that has two reserved nodes in the main produc-
tion cluster.

The total running time for the two-point workflow with
both setups are shown on figure 7. The horizontal axis
shows the number of configuration files used from the in-
put ensemble. There is no significant impact of recording
the provenance on the tested workflows. In fact the running
time in many cases is lower when provenance is recorded,
possibly due to delays in the cluster scheduler and related
components. Figure 8 shows the same running time per par-
ticipant.

One of the advantages of the provenance framework is
the ability to use the Ruby language to perform specific
queries based on the proposed model. Results from the

Figure 6. Two-point analysis workflow for one
configuration file

Figure 7. Provenance framework overhead
for the two-point analysis campaign workflow

queries can be manipulated within the language or exposed
to scientists through web interfaces. The queries show in
figure 9 provide answers to questions posed in the introduc-
tion using the interactive Ruby shell.

The format of queries follow an object-oriented style
since the provenance products are instances of classes de-
fined by the data model. This format is more intuitive
than SQL statements, although some flavor of SQL is still
present on the sample queries shown. A common approach
to minimize direct iterations with the provenance database
is to define a set of canned queries. The RoR environment
can be used to quickly make these default queries accessible
through the web.

5. Related Work

Provenance on e-Science is addressed by several sys-
tems [11]. Some of which focus on provenance only as
PASOA [13], PASS [9] and Karma [12], or are workflow
systems aware of provenance such as Pegasus [5] and Ke-
pler [2].

PASOA defines a provenance service that records work-
flow traces. The traces contain detailed information about
web services invoked during workflow execution. Compo-



Figure 8. Provenance framework overhead
per participant instance

Figure 9. Sample provenance queries using
Ruby

nents of PASOA provide valuable services such as the re-
trival of traces in a human readable format and validation
of web service calls based on logged information of past
service calls.

PASS proposes a very interesting approach for prove-
nance tracking that is completely independent of workflow
systems. It records events at the operating system level sav-
ing fine grained provenance data within the file system. The
transparency of this system makes it a great tool for sys-
tem administradors, but has limited applicability to LQCD
workflows. PASS restricts workflows to run on supported
operating systems only and limits the provenance data to
translations from low-level events (e.g. command line in-
vokations).

Karma provides a provenance framework independent
of workflow systems. A publish/subscribe message pass-
ing system is used for transmitting provenance information
from applications to a central server. Optionally it is pos-
sible to monitor the running workflows by subscribing to
provenance messages.

Pegasus and Kepler are workflow-based systems with
provenance features. Pegasus originally used the Virtual
Data System (VDS) to capture provenance. Currently Pega-
sus uses PASOA [8] for a more complete provenance sup-
port, including tracking of transformations between abstract
to concrete workflows. On the other hand, Kepler does
not directly support provenance, but extensions are avail-

able [4, 3].

Our prototype system has similarities with the PASOA
framework, differing on the data model and recording strat-
egy (service vs. active record). Extending our framework
to support a provenance service is an alternative for run-
ning workflows on remote sites. Such addition is possible
through web services support from the RoR framework.

An advantage of the LQCD provenance framework is the
flexibility to add application specific produced data into the
model. Furthermore, cluster monitoring data can be added
to the same database and used by the provenance frame-
work and workflow engine to provide enhanced workflow
fault tolerance features. Health information about comput-
ing nodes is already being collected at some LQCD clusters
using similar provenance data model concepts.

6. Conclusions and Future Work

In this paper we presented our work on the LQCD prove-
nance framework. The implemented prototype accom-
plishes the objectives of record provenance of generated
data, secondary products, workflow input parameters and
workflow execution history. We believed the proposed data
model can also be used with other e-science problems pro-
vided that specific domain data is included in the secondary
data space.

A preliminary evaluation of the prototype shows that
overall workflow performance is not affected by the addi-
tion of the provenance recording mechanisms. Furthermore,
provenance queries can use the full power of the Ruby lan-
guage avoiding SQL intricacies.

There are several improvements additions planned to the
prototype. Long lasting workflows may be spawn off to
clusters at remote locations with distinct acccess policies.
The system should be capable of handling database back-
loading with results from external processing. The devel-
opment team also focuses on the integration issues with dif-
ferent workflows systems, tests with Kepler and Pegasus are
planned.

7. Acknowledgments

This work was supported in part by Fermi National Ac-
celerator Laboratory, operated by Fermi Research Alliance,
LLC under contract No. DE-AC02-07CH11359 with the
United States Department of Energy (DoE), and by DoE
SciDAC program under the contract No. DOE DE-FC02-
06 ER41442.



References

[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski,
and A. P. Barros. Workflow patterns.Distrib. Parallel
Databases, 14(1):5–51, 2003.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher,
and S. Mock. Kepler: an extensible system for design and
execution of scientific workflows. InScientific and Statisti-
cal Database Management, 2004. Proceedings. 16th Inter-
national Conference on, pages 423–424, 2004.

[3] S. Bowers, T. M. McPhillips, B. Lud̈ascher, S. Cohen, and
S. B. Davidson. A model for user-oriented data provenance
in pipelined scientific workflows. InIPAW, pages 133–147,
2006.

[4] S. M. S. da Cruz, P. M. Barros, P. M. Bisch, M. L. M. Cam-
pos, and M. Mattoso. Provenance services for distributed
workflows. InCCGRID, pages 526–533, 2008.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems.Sci. Program., 13(3):219–237, 2005.

[6] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford.Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[7] J. Freire, D. Koop, E. Santos, and C. T. Silva. Provenance
for computational tasks: A survey.Computing in Science
and Engineering, 10(3):11–21, 2008.

[8] S. Miles, E. Deelman, P. Groth, K. Vahi, G. Mehta, and
L. Moreau. Connecting scientific data to scientific experi-
ments with provenance. InE-SCIENCE ’07: Proceedings of
the Third IEEE International Conference on e-Science and
Grid Computing, pages 179–186, Washington, DC, USA,
2007. IEEE Computer Society.

[9] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. InATEC
’06: Proceedings of the annual conference on USENIX ’06
Annual Technical Conference, pages 4–4, Berkeley, CA,
USA, 2006. USENIX Association.

[10] L. Piccoli, J. B. Kowalkowski, J. N. Simone, X.-H. Sun, D. J.
Holmgren, N. Seenu, A. G. Singh, and H. Jin. Lattice qcd
workflows: A case study. InSWBES ’08, Indianapolis, IN,
USA, 2008.

[11] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science.SIGMOD Record, 34:31–36, 2005.

[12] Y. L. Simmhan, B. Plale, and D. Gannon. A framework for
collecting provenance in data-centric scientific workflows.
icws, 0:427–436, 2006.

[13] M. Szomszor and L. Moreau. Recording and reasoning over
data provenance in web and grid services. InInternational
Conference on Ontologies, Databases and Applications of
Semantics (ODBASE’03), volume 2888 ofLecture Notes in
Computer Science, pages 603–620, Catania, Sicily, Italy,
Nov. 2003.

[14] D. Thomas, D. Hansson, L. Breedt, M. Clark, J. D. David-
son, J. Gehtland, and A. Schwarz.Agile Web Development
with Rails. Pragmatic Bookshelf, 2006.

[15] P. Wohed, B. Andersson, A. H. ter Hofstede, N. Russell,
and W. M. van der Aalst. Patterns-based evaluation of open
source bpm systems: The cases of jbpm, openwfe, and en-
hydra shark. Technical report, 2007.


